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TECHNICAL NOTE NO. 1466

. RECURRENCE FORMULAS AND DIFFERENTIAL EQUATIONS
| FOR STRESS ANATYSIS OF CAMEERED BOX HEAMS

- By Joseph Kempner
SUMMARY

Recurrence formulas and differential equations are developed
for the stress analysis of cembered box beams heving one or two covers.
In contrast to the elementery theory of bending, shear deformation of
cover and web 1lg considered. The recurrence formulas are applicable
to beams loaded by concentrated forces at intervals along their spans;
the differential equation is valid for beams of comstent section
loaded at the Tip and is solved for beams fixed at the root.

For various methods of end restreint, boundary equations are
developed whlch, together wlth the pertinent recurrence formula,
yield a set of simultaneous linear algebraic eguations. Solution of
thoese equations provides corvection forces which can be used in
conjunction with the results of the elementary bending theory to
determine the direct stresses in the stringers and the shear stresses
in the skin.

Comparison of the results of the applicatlon of the formulas
end differential equations developed with experiment and other methods
of anelysie indicate that the analysis presented ls gulte adequate for
the determinetion of the stresses in'cembered box beams, '

INTROTUCTION

-

In the past satisfactory solutions have beon obtalned for the
stregs anelysis of rectangular or flat box beams under bending loads.
(See, for exemple, references 1 and 2.) Procedures presented for the
snalysis of cambered box boams, however, have been for the most part
quite approximate. In the present paper, recurrence formulas are
developed for the stress analysls of single-covered carbered box
beams having singly symmetrical cross sections and double-covored
cambered box beams having doubly symuetrical cross sections. The
recurrence formulas, together with the boundary equations developed,



are applicable to beams loadsd. symetrically by concentrated. forces
at sectiona along their spens. The bheams can be restrained at both
ends, uwnrestrained at both efidg, "or restralned et one end and
unrestrained  at the other end. Ih any particular. problem, a
recurrence formula, together with the pertinent boundary equetions,
is vsed to obtain a set of simultaneous linear slgebraic equetlons
for corrections to the stresces glven by the elementary theory of
bending. For tip-loaded centllevered beams of uniform construction,
exact differentlal-equation solutions are developed..

I

Applicationg of both the . recurrenoe fomulas and dii’ferential
equations and two numerical cexermples ere glven, Comparison of the
results of the present anslyses wlth experimental data and othex
nmethods Indicates that the solutions presented hevein are gatlsfactory.
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 SYMBOIS -
o . O I ) o o
Ay, Ag, Ay effective cross-sectlonal ervea of stringers F, S, end L,
T respectively . —
. . i - = 1‘5:': -k
& L Young & modulus L
G - shear modulue i T
I moment of inertie of cross section with respect to o
"neutral axils
L _ length of beam _ % =:
Ty " length of bay i o L
M : bending moment on cross section e
load on web . : —_ —
Q statlo moment about neutral axils of cross-sectional

aree lying between extreme fiber and plane under

conslderetlon }
v - - rosultant vertlcal sheer :'E‘o'rce_' ‘on enoss -s":e(:i;ién A f
X _.correction force - o ~ o o
b 7 half wiath of cover meaaured along, croms ‘soctian _ o
c magnitude o:E‘ oamber o N ; ‘:

i 1 “I] I

H
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h depth of web T -

[Ed

gonoral designation of sectlon or bay

k fixity factor for carry=-through bay .
m designation of bay adjacent to rigid support
skin thickness
u, v axial and chordwise displacements s res_‘pectivel;y'
X, ¥ a:zrial end chordwise coordinate axes
yl' cover coordinate axis (See fig. 3(a).)
Z distance between neuitral axls and stringer F
S stringer displecement due to elementary shear stress
5(x) stringer displacement at distance x due to!

correction sheaxr stress

-

¥b
x:( bhtv>c;t Tanh K1,

. Kb
‘bhtw Gt, sinh KL

<
|}

: {y
fé’l (z+c) E&S(z-t-c)-bAFz] }
2
' 2¢ 'bc K"
M= \1+ . ;
bhty / Gt tenh 'L
2::2{:0 X'
-
b1= \* i, / GF, stoh KT

vl o=t As(h + 2c) [ (h + 2c) + AFh:t %;}
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o . ‘btotel stringer stress. .. .
T .correction stringer atress
T © total shear. stress -
. _corréction shear stress

T! olementary shesr stress. -
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o3 C) + 2c>
I’ |2 _ EbAF h2
:.l = 2
2¢cc%
[+]
1+
bhit,
‘ | _
K2‘2 oo oty o ' _ ] N
202+,
L bht,
- - .
Subscripts
c cover
1 bey 1
m bay m
w web
F refers to stringer F
S refers to gtringer 5 - -
L refers to stringer L

INADEQUACY OF EIEMENTARY THEORY

The elementary theory of bending yields for the dlrect-stress
and shear stress in a cambered box beem (figs. 1(a) and 1(b)) My/I
and VQ/It, respectively. Although the stresses obtained with these
relationshlps satisfy the laws of statits, the corresponding strains
do not satisfy continuity conditions. If, for exemple, a bean l1s
loaded at several sections along ite span, as in figure 2(a}, the
shear strains calculated froam the elementary theory permit dlscon=-
tinuities in the box cover at sections at which steps in the shear
diagram occurs. The discontinuities at each of these sectlons can be
resolved -into two components ~ that due to shear in the cover and
thet due to sheer in the web. As indlcated in figure 2(b), the
elementary shear strains in the cover tend to displece the upper
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stringer toward the supported sectiom. If no shear existed In the
cover, howoever, elements of the cover that were originally perpen~
dicplar to the web at the flenge (stringer F) would tend to remain
so during shear displacement of the web. As shown in figure 2(c),
‘the vpper stringer now has the tendency to be displaced away from

the supported end. Since the megnitudes of these éisplacements are
proportionsl to the extermel shear acting on each bay, the slementary
thecry pormits disccntinultles to oxist at those sectlons at which
externsl shear loads are introduced. Discontinuities between
edjacent bays heving differences in congtruction are also pormlttied.

For a tip~loaded beam fixed at points indilcated by the circles
in figures 2(b) and 2(c), the stresses in the sheet and stringers
would be in asgreement with elementery theory only if the upper
stringer at the supported end 1s permltted to be displaced in a
menner consistent with elementary shear stresses. For beams fixed
rigidly at ome end, this condition is campletely neglected by the
elementery theory. It should be noted that, for bending of the beam
(without shear deformation), sections that were originally plane
remsin so efter bending occurs and merely rotate wlth respect to
oact. other. Ae indicated in figure 2(d), no discontimuities arise
vher. thess rotations are permitted.

|

Because the stresses in box besms determined from the elementary
thecry do not satisfy conditions of continuity, and conrequently are
inadequate for the analysis of beams similar to thoss used iIn
airplene construction, recurrence formules and differentlal equations
are developed in the present paper for the determination of self=
equilibrating correction forces which, when combined with the '
elementary forces, yleld stresses thet satisfy the laws of statics
ag woll as the ccnditions of continulty.

BASIC ASSUMPTIONS OF PRESENT THEORY

' In the development of the recurrence formilas for the corrections
to the elementary theory, the following baslc assmnp*sipns are made:
(1) . The beem is prismatical and is composed of ;bays, the cross _
gsections of which have one or two axes of synmetry as shown in
figures 1{a) and 1(b). . _ i

, '(2)' Each box cover approximates two flat platea Joined ata
central cover stringer (fig. 1). IXT thé cover is cwurved, the arc: of .
the crosg section of the cover can bo replaced by two equal chorda.
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(3) .The skin of covers and webs ig ‘capsble of ca.rrying enly
shesax stresses, wherees strinuere plus an effective sheet area earry
.only direct etreds. .

(%) Chordsrise displacements sre negliglble.

DIFFERENTIAL EQUATIONS FOR THE STRUSS ANALYSIS .
OF CAMBERED BOX BEAMS

Beems with One Cover

A second-order differential equation is fowmd for the stress
analysle of single-covered cambered dbox beems. This equation i1s
applicable to laterally loaded heams having external shear forces
symuetrically distributed between the webs. In addition %o the basioc
assvmptions listed previously, for the solution of the differential
equation,the beam is assumed to be a tip-loaded cantilever box of
wniform construction (fig. 1(a}). Beceuse of symotry, only half the
beem is considered in the anelysie (fig. 3). The upper stringer of
the half cover has half the.area of the originel cover stringsr.

Expressi for str r_and shear atresses.=- The origin of
coordinates is located at the rocot as indicated. in fTigure g(a). The
direct’ si,ress in each stringer is . o

du
g =Eaj—c : (1)

" in which u represents axial stringer displacement. The shear
stregses in the web and cover, respectively, are

(31.1"1. av )
T =G\ + =
w oy ox
> (2)
du, Bvc
t T o= G_ —— e m—
c ayr ox
in wvhich W, and - respec'tively, are . :L" and y-displacements of
the web, and, uc ‘and Ves respectively, afe the x- end y'~displace-

ments of the cover. The sign conventlon for the shear styess is
indicated on figure 3(b).
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| If the axial displacements of stringers ¥, 6, end L
(rigs. 3(a) and 3(b)) at any transverse sectien of the besm are
deslanated as Upy Vg, 8nd  up, respectively, equations (2) becoms

‘ , .uL - av“> _ -
> (3)

gince

from egquations (3) ylolds

¥

Elimination of

T TR Tt () - ey - ) | ()

Faullibrim relationships.- Consideration of the static
equilibrium of the forces on the free-body dlagream of figure 4 yields
the following differential equationst

c’e WOW
R LA . L1 a
dﬂ . t .. = - - -z
.._....S.:; - ™ c ¢ (51))
o As
Cdo, T4
...__...L_ = M (50)
dx L - ) . T — -

If any cross section of the beem 1s loaded by & shear Pforce v,
then from further equilibriwm considerations (fig. 3(b))

Fi
2
4 %! .',i"i.'

.

et
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vaW Ih-+ Tc'bcc" ’ } I .
: > (6)

T %
or ctcc

T

-
T tm Bh

Differential ecuation for shear stregs in_cover.=~ In order '_'bo
obtein ‘an expiession for. To 1in terms of the physical properties of

the beam and the external loading only, "T., up, ug, and vy, are

eliminated from equation (4). Differentiation of equation (&) twice
and subsequent -substitution of eguations (1), (5), and (6) into the
resulting expression yields the following second-order differential
equation for the shear stress in the cover of the beam:

(Dé -_Ke)-rc' - <K22D2 K Klé)'»f : LY AT

_in which

1%

bht '

G 1 e L l)
e S =
o E'bh‘_.F' hG AL

P B i 14 c K S S
R i Iv b.lltw, - _ - . . <

‘;"r
xY
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Shoar end stringer stresges.=- From equations (6), (9), (10}, i
and. (12) s “the shear stresses in the cover and web, respectively, of
a tip-loaded cantilovered beam are

2 \cosh K(L ), 2
T o Wk - ¢ oosh K(L - x P (13a)
° K° bht, + © 24 Q} cosh K, K2

L. - - -

10 . . L JSAQA TN N'o- 1466
Solut: of differentisl. squation for a tip-loaded beem.~ For a
tip-loeded beem (fig. 3(a)), equation (7) reduces to
-, - P (&)
_ _ _ . S—
in wvhich P *is ‘the load at the tip of each webs, [The general
solu'bion of équation {8) i S -
_ L 2 B
= : - Ky :
‘l‘_ Cls:.nhFac+02costh+;{-—2~»I’ (9)
in which §, end O are cobstants. of integra.tion. TAb the fixed =~ T
“end, x = 07 and uF Yy = up = 0. Hence, from equations (%), (6),
and (9),
X 2
1 G
Ly = - - - P (10)
2 \& g, + b
At “he free emd, x =1L &apd op =dg = op = O Censequently, from ' -
equations (1), (&), and (6), at x =1,
) a-T - -2 4 '=":E
(o] - —
—_— =0 13
= | { _) ; _
and therefors from oquations (9} and (11) T
Kl c
2O\ pht + ot
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2 2
oo Pef®® o Nooshk(n-x) | X,
- S AU . + =1 -ty 5
v oot \g2 'bh'bw +¢2t /' cosh KL Gl K2
(13p)
. The corresponding str.esses in stringers ¥, 5, and I,
respectively, are from equations (5) and (13)
2
o Pty (h + c\/Kl ) ° sinh K(L - x)
P Kla
+ —— 15, (h +0) 5 -1} (x - L) (1ha)
an L T2

: - . 2
S A-Y e c sinh K(L - x) Y%y
8 Es\k® ny + oPy,). oo EL . Ag®

P(x - L) (14)

2
__ Petg (Kl _ . - )sinh (L ~ %)

op = :
L Kogh \g2 " tht, + cetc cosh KT
- ( Kle) " o
+—— \1 = cty =} (x ~ L) , (1hc)

In equations (13) and (14) those terms conteining hyperbolic
. funotions represent corrections to the stresses obtained with the
elementary theorye. The other terms yepresent the elementary stresses.
If a substitute structure is conesidered, therefore, the corrsction
terms only should be found and added to the elementary stresses that
correspond to the actusl structure. . ’

Beams with Two Covers

A typlcal beam having upper and lower covers of equal camber
is shown in figure 1(b). Beceuse of the double~symmetry of the crosse
sectlon, the analysis of this box 1s 'somevhat simpler then that for
the single-covered box beam. For the double-covered beam, equations (),
(5), end (6), respectively, are replaced by (fig. 5)
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Elimination of 7., vup, end -ug from eguations (1), and (15)

to (18) yields the following differential equation for the shear stress
in either cover of the beam

2 ' o I
.(D - F'Q) 7, = (r"%” - _Kl"?)‘f - (29)
% [&.(1:33‘2 L

26%4 )
e
bhty

In whilch

o .G (_h + 20)
l = P
' 2¢ te
) 1+ -
Bl

2- e

FC

!
]
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For & beam loeded at the tip of each web by & force P,

equation (19) beccmes
(D - K’Q) = K, 2P (20)

Solution of this equation for a beam fixed at x = 0 ylelds

the following expressions for the shear stress in the covers and
“\

webs, respectively,
o 2
o[ c cosh K'(L - x) T o
T 2 bht, + 224 cosh K'L I{'2
c ' >(21)
o EP'bCC Kl‘ _ o cosh K'(‘L - X)+ _:E_ 1 - 2¢0% Ifl-_'_.
v " Ton \gi2 Tt + 2 2 cogh K'L t, g2 g

The stresses JIn the stringer of the tension cover of the beam

(upper cover in fig. 1(b)) are of equal magnitude but opposite in
slgn to the correspyonding stresses In the stringers of the ccmprsssion

cover and exe
-\

2
oo = Pt h+2c> K - c sinh X*'(L ~ x)
¥ K'Ap h K12 bht, + 20" t cosh K'L-
K 2 ‘J S (22)
-~t(h+20)--—~—-—~-l (x - L) '
" g K2 |
2 2
Ptc Kl’ c ginh K'(L ~ x) -chl' .
Oq = ° 4 5 - - P(x - L)
5 KiAg\x*  tht, + 2658, cosh K'L Agk '

In equations (21) and (22) those terms conteaining hyperbolic
functions represent corrections to the corresponding stresses
determined by the elementary theory.
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TEVEIOPMENT OF RECURRENCE TORMUIAS AND BOUNDARY EQUATIONS

" Recurrence Formuls for Single-Covered Box

Progedure.~ At any section 1 of a cambered box bean with a
single symmetrical cover (see fig. 6(a)), the discontinuity or 'gap”
in.the cover permitted by the elementary thaory is determined. A
sulteble set of stringer correction forces, which cen be related to
stringer displacement at any section 1, l1s found and the wenner in
which these forces distribute themselves within a bay 1s determined.
A recurrence formuls ls-obtelned which, when applied to successive
gections, yilelds a set of simultaneous equations Tor the correction

~'force in the cover stringer at each section considered. The

corrections to the elementery stringer and shear stresses are
therefore readily determined.-

Stringer displacementg due t_éh._e_;e;geg'baz:x sheg;r_f- gtreggeg.~ In order

to determine the magnitude of the discontinuities that would exist
between adjacent bays on the basis of elementary theory, the stringer
displacements &t eny ssction 1 at which changes in external loading
or bay constriction teke place ere foumd from the elementary shear
stresgeas Because of the symmetry only -ohe half of the beam cross
section is considered (fig. 6(b)). The upper stringer of the half
coverr hag half the area of the originsal cover stringer.

The elementary shear stresses in the cover and. web of hay 1
are, respectively, .

Vit
T'ci - i_ i i (Zi + c) . (23)
Tyfey | i
-V ‘: ( T ) B T i
U = A, fzy +c) + A ZJ ' (ek)
Wy 5,071 ¥, o4
Iitwi 1 ) t -
in which
Apy Hg cross sectional effectlve area of stringers F end S,
respectively
I, “mément of inertis with respect to neutral axis of cross

section of bay 41

SR
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c . cember. (vartioa.l dis‘bance of stringer S from s'l:ringe'r' F)

'bci, 'hwi skin 'bhic]mess of cover a.nd wob, respectively, of bay 1

Z. distance of stringer F from neutral axi&
The sign cg vention for the elementary shear stresses is indicat@d
in figure 6(b).

If the part of stringer S within bay 1 is to remain
continuous with the sheet of the cover of bay i, becauge of the
elomentary sheasr strosses, each point of the s-brin.ger segment must
‘ve dlsplaced a distance (fig 5{c)} _

A -

'*5-_-"9.-7*1'1. (2
1 i G 1 @ (@5)

in which G 18 thé shear wodulns and b, the half cover width. :

The first term of the right~hand side of equa-bion (25)
represents the contribution of the web shear stress +to. the stringer
displacement, whereas the second term is the contribu*bion of the -
cover shear stress. Frcm equeblons (R3) and (24), equation (25).
becomes. .

81 = "Vivi (2'3)

~ in vhich

v IiGl (i+°) [:Si(i+c +AFZjl]th

.
~

From elemen‘bary conslderations, 'bherefore the total gep
between the segments of stringer S of adqacent bays 1 end 1 -1
(see fig. 6(c)) is . ) _ .

By =8y = Viwy Vi "M Vy . (27)

Equetion (27) indicates that, on the basis of elementary theory,
displacements of the cover of ad.,ja.cent bays having dilfferent epplied
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externalshear forces:.Qr wawlafions. in.gfrnotural properties
result In discontinulities in the cover. )
. .

et e LR I R The e b ot T Tt oTTT T
Correction forces.~ At any section 1 of the beam, disconti-
nuities can be eliminated by the application of a suitable set of
self~equilibrating worrection:forces. fo slringexs F, S, and L.

If a force =X, 1s applied to stringer 5 (fig. 6(6.5) tho applied
' "fortds Fequired at stringers F Cedd I ‘are, rospectively, o

»
v

G2 T T 1’1+c'X '}

and. - o ' EREE

A i

where h 1s the depth of the web. In order to utilize these forces
for the eliminaticn of the dlsconitinuities in the cover, a reletion-
ship must be determined between.the displacements of styringer .S and
the correctlion force X.L

waveriesrs Relationships between corregtion force and stregses.- Ip order
ato £ind the desired relationshlp between stxinger disvlacements and
corgection force, the shean stresses in the cover and web (see -.
tig. 6(d)) are ‘expressed as a function of X. Since the set of —
correction forces yields no resultant vertical shear, equation (6)

L for eny section 1, reduces_ to

T t. C
CqCq

t{rih

(29)

T = =
Wy
" £

whére the horizontal bar indicates correction stresses. Fram
equations (1), (4), and (29), the shesr stress in the cover of bey i
due to the application of the correctlon forces is expressible as

El e N 2t d:F Lo . i - . .
c . I ‘ . ’
c e a R
e L R ™
'bh'bw. dxi h i Eb i Ebh 4,
1, N .

S '7 R
in which T
i . - - -
. - ~for stringers - ¥; S, and L, respectively,.et aiy distence xy fram

. ESEEE LY - — R

s Gg , 8nd T; are the correction etringer streseses
1 1

Iy

o)
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section 1. Tn figure 6(&) it is seen that at xli =0,

— h—i—cX =~
[} =
Fq 7 1
1 na
Fy
x
Ty, = "—— S (31)
i - A
53
end
— [¢]
Gp, = =X
T i
L bRy )

Substitution of equations (31) into 'equation (30) yields
at Xy =0
i

2 = .
1 +f__t_cfi f&i-:-g-é_ +E_)CJ_,:.S)..}E’_—+ g'.. ﬁ_ +C_}_C_ _.c..}.c_i__ (32)
'bhtwi dx4 Eb h h Fy Eb 1 Ibh h A
orat x, =0
L d‘ci Kia
1 3
in which
Gtcil‘l/h,, °>2 A ce]
‘ h A Ar 42 |-
o EO |Aw,\ As; Ay m
s 2
¢ tc
1+ i
bht
Wy
At =
xi Li
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and from equation (30), therefors, at - %y = Ly,
. aF -
- - -Gy

- =0 . (3u)
dx,

The manner in which the shear stress in the beem cover i1s
distributed consistent with no resultent shear on a croseg section
is obtalned from equation (7) whicH reduces to

(D? - Kie) Ty = O (35)

The genorel solutlon of this homogeneous second=-order
difforential equation is ' -

= e

Al

fci = C1 sinh Kyx, + Cp cosh Kixi_ (36)

Introduction of the boundery conditions represented by equatioms (33)
and (3%) into equation (36) yilelds the Ffollowing relationship
between the shear stress iIn the cover of bay 1 and the applicd
correction forcs Ki

J __ . —_

T, = X (37)
c i
1 Yoy sinh KiLi L
From equations (29) and (37) the shoar stress in the web is o
- K,c cosh K, (L, - x o T
T o (s 7 %) (38)

T beh st

Relationshivps between correction force and gtringer dlsplecements.=~
Within eny bay 1 the dlsplacement of stringer S corresponding to
the correction shear stresses T"ci and -?Wi and, cansequently, the

correction force X4, 1s determined from equation (25) and is

] . _ .
gﬁ.(xi) = Tvi__'é " Tey o (39)
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Substitution of, _eg_uatibns (27) end (23) into equation (39) ylelds

g L Q2 -
5 (Ii) e toy\ VKy ocosh K, (Li xi)z
Phty [ o, sinh KyIy

(40).

E'Quation (40) relates the axial displecement of stringer S at any

point x4 ‘to the correction force X,o Ifbay 1 has a .Length Ly,

the displacement of the cover s*lzc:mger at x3 =0 and Xy =

1 are,
respectively,
81(0) = A%, ‘ (1)
in which
SN :
g, Kb
}"1 ~ {1 + AP
'bh“c.wi .Gt'ci tanh KLy
and
Si(Li) = 14Xy (42)
'in which
2 .
t Z3b
14— o

l‘l =
1 Thty, | Gt sinh Kyl

Develomment of recurrence formula.- A recurrence formuls can

now be obtailned from consideration of the amount of correcticn
force X; required to eliminate the discontinuilty detéimined from

the elementary theory. From equation (27) the magnitude of the
discontinuity between two adjacent bays i end 1 -1 (see |
fig. 6(c)) is

B " 8iay = ViaViar " MYy (43)
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-Since, -in general, correctlon forees -are applied to both ends of a
bay, the discontinulty defined by equation (43) is eliminated by the
epplication of correction forces X;.i, -Xy, and X, ., (figs 7).

Consoquently, from equaticns (41) and (42) tho discontinuity at
section 1 can be eliminated 'by'lma.leing '

By =8 = (bgFag - M’_‘:g_) " (Mg “HieXger) (B4
Combimt'ion of equations (43) and (%) yielde tho following
~'recurrence formula rolating the correction forces X at three
successive sections: :

Pi-lxi-l - (;\‘:L-l * )"i) Xy + ”:i_xi—!-l = vi-lvi-l AL (1*5)

i |

It
ki
do0g !
il

The recurrence formula (45) relates the correction force
applied Lo the cover siringer S at sectlon 1 _ to the corresponding
forces applied at tho sectlons adjacent to gsction 1. One equation,
thorefore, similar to cquation (45) can be written for each section
of a single~covered cambered hox beem provided that at least one bay
oxlsts on each side of that section.

B - -

T *° Boundery Equations . e

Eguations sultable for application to bays adjacent to boundaries
can we readily obtained from the previous analysls and the portinent
boundary conditions. Conseguently, boundexry equations are presented
herein for conditions of full restraint, partiel restraint, or no
restraint. By suitaeble canbinaticns of the boundary equations, and
Proper menipulation of the subsoripis, these equations cen be applied
to the enalysis of beams restrained at both ende, unrestrained at both
ends, or restrained at one end and wnrestrained at the other.

- Boundary eguwation Ffor fired end.- If a beem is fixed to the
right/'of bay m as indicated in figure 8, the stringer dilsplacements
at se;)cg%on m+ 1 must be zero. Consequently, from equatioms (41)

e e

- SIC}_,: A!I‘.Xm+l -_F _pmxm .- - :. . (}4,6)—

-
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and from equation (28), therefore, the fixed-end boundary equation
is

e - - {bT)

If the beam is fixed to left of bay 0, the boundaxry equation is
A’OXO - t-loxl = Vovo (11-8)

: @andB,mggna'b:,on for _g&e_giggjg_e end.~ If the 'beam of f:lgure 8
is uynrestrained to the left of bay 0, ‘the correcticn force at -

gection .0 is zsro. Therefore, from continuity considerations at
section . 1 and from equations (27), (41), and (42), the wmrestrained-
~end 'bopndary equatlion which 1{3 wv'i'b__ten for sectlon 1l is ,

- (7‘0._““.7“1) Xy + ¥y = Voly = MV o (49)

and i:t‘ bay m is unrestrained at 1ts right, the, boundary equation for
bay n is .

M1::1-'ZI.XI:L1.-ZL (Xm-l + ?"m) Xm = Vm-l m~1 vam (0)
Boundaxy eguation for pantly regtrag,_z_'_zg_d end.- If a bean is

continuotis through a fuselage as shown in figure 9, bay m is
partly restralned at its right end. The boundary equation eppliceble
to section m+ 1 1s

“mx;n B (“m + k) Zoel = Vol . ... (51}

In vhich, when bay m + 1 1s composed of both skin and stringers,
2 .2 |
X = » m+l M el
PN

m+l
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and, when bay m + 1 1s composed of stringers only,

k= Ll (h + C h )
© nE AFp1 ASm+1.

* - R B -

Recurrence Formulae for Double_-COVersd Be@_

A recurrence formula for the determination of the correction
forces for & douvble~covered beam such ag that indicated in
. flgure 1(b), cen be cbtained in a manner similar to that used for
the anslysis of the singlercovered beems The equatlons presented
in the previous analysis must be altered, therelfore, as indicated.
below.

(1) In equations (23), (eu), : '_-('26),- z 'is replaced By -2—
(fig, 5(a)).

— (2) Equation (27) cen then be V?itten as

diit -
b/

By = By.q =V ~1Vi1""i"'1 | ' ' .' (52)

in which
o } _,{q(h+2c) Exs(h+2c) +AFh] tw}

(3) Rela'bions (28) ars replaced. by (seo fig. 10)

e

- - v e -

h + 20 7
n i L
» E )
L+ 2¢
- X
h i y.
(&) Equa.-b:l:on (7) becomes ) B
- A ==
Toom (5k)

'Wi h
T TR
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From equations (1), (15), and (54) » the shear stress in either cover
of bay 1 cen then be expressed as - ' :

2 -
2¢5% aT
c c G 2¢c\ . G
L+ =t 1+ Pay L5 (55)
h/"F Ep S
bh dx i 1
ty, )
(5) Equations (31) are replaced by
h + 2¢ A
- x
F i I
1 Fi )
(56)
S
P17 Ag b

(6) Fram equations (19) and (54) to (56), and (34) end equations
similar to equations (32) to (34) and (3 ), the following expressicms
for the shear stresses in cover and web which correspond to
equations (37) and (38), respectively, are

. K'y cosh K'i(Li - xi)

? = =

- (57)
°1 oy simh KNI,

-—

K'sc cosh K'y (Li - xi)

Ty, = X (58)
1 1 tyyb sinh K' I, .

(7) The relationships for the Gisplecement of stringer S
at x; =0 and x4 = L; that correspond to equations (51) and (52)

are:l

Ei(o) = &rixi (59)

in vhich o
Pa tc K'ib
Al . = 1+ L
]
bhtwi G-tci tanh K iI‘i
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and ' - ) . '—:-Q

By fg) = r'eFy (60)
in which - o=

Lt 2c®t,\ = K'D
;J,"i = |1 + i A—j.'
: y 1 4
'bhtwi Gg, sinh K'yI, B
(8) The recurrence formmla (45) and the ‘bmmaam:--eqﬁa:tions (47) S
to (51), respectively, can then be written for & double~covered box as

t - b} ] \ -.1- 1 . - N Uk

Mgt (’“ 1 * N 1) Ty ¢l = Vil - Vs (6

T O I\
Ao = igEy = Vol

- ' ] _ %3 - } :
, (’“ o* ""1) Xy +klyEp = Viglp ~ YWy

o (7" 'we 7"m) Xp = Vipe1mel © VoV

(&)

ey

H ik = _<7‘"m + %) Epyy = Vol .

in which
xte - p. l2
k' = m+l m+l

]
A s+l
vhen bay m + 1 1s ccmposed of both skin and stringors, end

" ‘T‘tn+l<h+£c_+__h
. HE A1 Ama

(64) voE
(65) —
. (66_).. ~m NPt

vhen bay m + 1 is compesed of stringers only.

Pl
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Applicaetion of Recurrence Formules and Boundary Bquatlons

Simultaneous egustions.~ After a beam has been subdivided into
the desived number of bays (see fig. 8), sn equation in terms of the
wnknown correction forces X can be wrltten for each bay. Recurrence
Formula (45) (for single-covered beems) or recwrrence formule (61)
.{£or douvble=-covered beems) applies to all. bays located at least one
bey from a boundery; wheress equations (47) and (48), eguations (k9)
and (50), and equation (51), respectively, epply to fixed-end,
wrestrained-end, and partly restrained-end bays of sin.%le ~covered
beams and egquations (62) and (53), equetions (64) end (65), and
equation (6%) s respectively, apply to fixed=end, unrestralned-end,
and partly restrained~end bays of double-covered beams. The group
of equations thus obtalned constlitute a set of simulteneous linear
algebrais eguabions for the determinatian of tlie correction forces
at each section. A typlcal set of equatione applicable to the besm
of figure 8 is given in teble 1.

Calewlation of strinser stresses.- The total stringer stresses
are ovtalned frcm the addition of the elementary stringer stresses
determined from the formmla My/I end the corresponding correction
stresses determined by dividing the correction forces at each section
considered by the effective stringer areas at that sectlion. If the
‘beam considered is a simplified or 'substitute" structure (see, for
exsmple, p. 2, reference 2), the elementery stresses should be taken
as those of the actual structure. The correction force for the cover
stringer S at any section 1 i1s obtained directly from the solution
of the simulteneous equations; whereas the forces for the web or
flange stringers ere obteined from relations (28)(for single-covered
box) or relations (53) (for double-covered box). The total stresses
in stringers F, B, and I, respectively, at section 1 of a single-
covered beam are -

Mizi h+c x ' )
[} = -
F hA 1
1 I, Fy
M, (z, +¢) X -
i( 1 ) i
o = + 6
Sy I A, o N
Migh - zi). .
oLi = = T -+ oy Xi
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Similarly, the gtresses in Bfringers ‘F and B in elther cover of
a double~covered beem sre
- ~
e 4P nse
S hAFi 1
- . > (68)
M._L(h + Ec) Xi
g
3
i 211 Asi
- - . - . . - .. - - B
Calculation 'o;Ej shear streppes.~ The shear stresses in cover -
end web at any sechtlon 1 =are cbtained from additicn of the
elerentary shear stresses delermined from the formula VQ/It and
the correction shear stress T determined from equations (37)
and (38) (for single~covered beems) or equetions (57) and (58) (for
double~-covered beams). The total shear stresses in cover and web,
res:pectively, for a single-covered 'beam exe, therefore,
— . YiAS_i( y + c) . Ky (%y cosh K,L, =X, 5
c 5
e Tyt cy . sinh K I,
and. . R LT TEL D e e lE e -:._1 -:- "- : I _h : _..;_i_%,_ﬁ
V‘i .~ K c X cosh KJ-I‘:I. i+l ‘
Twi = ——-—-LAS (zi + c) + Ap 24 (69)
'Ii‘twi i 1 tw \ sinh KL,
or T - ' _mm——
A z < -
oo 8371 +©) Ky (% Xi cosh Ki 1I’1 -1
cq ) t
Iitci Ciug sinh Ki lI'i -1 | |
and - - : TS T LT . : D m—
X X cosh X
TW "I‘t‘EXSi(j-Fc +AF11]+11 i-1 L ili"l
1%y t"’:i-lh \ s:.nh K:!_-_‘lLi -1 e e

Similerly, for e double-covered beam, the shear stresses in cover
and. web, respec'bively, are
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1 1
N YiASi(h + 20) i X'y (%y cosh X', L, =X, .
Cs - )
i 2%, © by sinh K' T,
and
Kt c %, cosh X',I, =X
L Fxs (h + ac) + Ap h:t 1 td i+l (70)
t
1 BIi sinh K iLi
o]:" - . . . . .
t -
L Vb (B 20) Kl %y - ¥y cosB K'Yy Ly
ci .b . "
end
] - ?
. vy A (b 5 20) + A T 2K 1 ~1° Xyog =%y OOSh-K'i-lLi-l
v = Si( + 2¢) + Fy DU
L eIy, 4 -] sinh XK'y Ty

If the corrections are for & substlitute structure, the elementary
streasses shculd. be teken ag those of the actual structure. .

NUMERICAT EXAMPIES

Exemple 1 ~ Cembered Box Beam with Single Cover

As an illustretion of the applicetion of the recurrence formulas
and differential equations developed in the present paper, the single-
covered. cembered box beam of reference 3 is analyzed herein. The
beam can be considered as s tip-loaded cantilever box of umiform
ecnstruction. Pertinent dimensions of both the actual beam and the
substitute structure used in reference 3, as well asg in the present
anelysis, are given 1in figure 11 and in ’ca'ble 2.

Application oi differential ~equation solubion.= Since the beam
considered (fige gd)) is tip-loaded and of wniform construction,

equetions (13) end (14) cen be used Ho determine the shear and
-stringer stresses, respectively. Since a substitute structure is

to be enalyzed (fig. 11{c)), only the correction terms of these
formulas requlre consideration. After substitution of the mumerical
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values given in table 2 into the ‘correctien terms of equation (l%a),
the correctlion shear stress in the cover becomos

“ﬁ'c = *21.9 cosh 0.,074(88 - x) (71)_

in vhich x is in inches and is measured from the root.end T, 18

in pounds pey squere inch. The elementery shear sitress in the part
of the coaver adjacent to stringer T of the actual structure is

- 9360 pat (72)

Consequently, the total shear stress in bhe cover skin immediately
adJjacent to strinmer TF is | _

T, = 9380 = 21,9 cosh d.o"(h(88 ~ x) " (?3)

in whivh T/ ‘is measured in pounds per squere inch. Eguations (72)

end (73) are plotted in Tigure 12, along with experimental date
obtained for the bean discussed.

The strinzer stresses for the substitute structure are dctermined
from equations (lh) Substitution of the mmerical values given in
table 2 into the correction terms of equations (14) yields the

followilng cxpressions for the correction stressez for stringers F
and 8, R

Qa
g
i

Q
45}
1

= =13483 sinh 0.074(88 = x) {(75)

in vhich & is in pounds pexr sguare inch. These corrections are
plotted in figure 13.

= 15.57 sinh 0.074(88 =~ x) (74)

ﬁ
I
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Although Tp is merely added to the corrvesponding elementery

gtress to obtain the total stress in stringer F of the actuwal

structure, ‘65 must first be distributed among the three stringers

of the actual cover and then each of the three resulting correcitions
added to the corresponding elementery stringer stresses. In
accordance with relerence k, FS_ is distributed along the developed

width of the cross sectlon.of the cover as a third-order parabola
(fig. 14). Therefore '

veps G AE) | 8
with | | |
-3 distridbuted cover stringer ..c:orréction stress
B negatlive of correctlion stress at center line of cover
S developed distance from center line of éover
b, developed length of cover

Since o_ 1s distributed along the developed width

8
- bc :
GSbctC = 5 O"tuc ds

i
&
Q
o
s Q
1
T a
e
=+
m!
o~y
]

and, consequently

and, therefore,

P30 tm il ) (Y m
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The correction stress: in stringers l 2 and 3, respectively,
at eny distence x -from the root 18 determined from equation (77)

by teking (S ) eaual %0.0.364, 0.0787, and 0.0029P. (See fig. 14.)

The correctlon stringer stresses defined by equations (74)

. and (77) are added to the elementary stresses determined from
reference 3, and the resulting total stresses are plotted for the
root Yegion in Tigure 15, together with experimental data.

Application of recurrence-formuls solution.- The beam of
reference 3 can also be analyzed by the recurrenco formula method.
Bince the beeam is single-covered aud cantllevered, recurrence
forrula (15) and bowndery équaticns (L47) end (h9) are applicable.
If the beam is divided into four bays of equal length (fig. 11l(e)),
m 18 set equel to 3 in the equationg of table 1, and the numerical
velves of the constente are teken from tedle 2, tne following set of
similtensous equatlons for the correctlon forces X,, X, 13,

and .Xh is obtained

—— - . - R ) ) s e

: | Xl X2 X . XI& C??i—?)mts

o

- *15 55 2469k 0
- 094 "15 )5 2'91‘- 0

- 2.9k -15.55 2.9k 0
2.94% ~7.77 18000

Solution of this_set of aquations yields:

X, = -18.2 pounds, X, = -96.4 pounds, X, = -491.0 pounds,

1

and Xll = =2500 pounds,

3

’ The correction stringer stresses are obtalned from substitution

of the numerical velues of X into the X~terms of equation (67).
For stringers F and S these corrections are indicated by the

crosses on figure 13 which fall on the curves obtained from the
differential~equation golution.. In order to cbtain the totel stresges
‘in the actual structure the corrections must be considered in a .
manner similar to that discussed in the preceding scctlon.

The correcltion shear stresses at each of the four scectlons
considered are obtalned dlrectly from the X-texrms of equations (69).
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These corrections are added to the elementary ghear stress determined
previously and are indicated by the crosses in flgure 12.

Example 2 = Thin-Web Beam

In order to lllustrate further the application of the recurrence
formnlas and differentlal equations developed, a thin-web beam
(fig. 21 of refsrence 5) is analyzed by uss of the formules end
equations for a besm with two covers. A sketch of the beam indicatbing
the method of support, lecading, and pertinent dimenslons is given
in figure 16. ' '

1ilcatlon of differentisl-equati olubion.- If in
equations (21) and (22) (obtained from the solutlon of the differ=
ential equation (20)) the ceamber c¢ 1s made equal to the width D
(sce fig. 6), the panel ghown in figure 16 cen be analyzed directly.
Only the stringer stresses will be determined. From equations (22)
and the numerical values glven in table 3

Op = 1068 ~ 22.59x - 27.7 sinh 0.06T4(kT7.25 - x) 1

| > (78)
og = 2135 = 45.18¢ + 7.91h sinh 0.0674(k7.25 - x) l

-

in which =x 18 measured from the root in inches and ¢ 18 in
pounds per squave inch. '

The stresses obtained with equations (78) are plotted in
-figure 17 and as indlcated coinclde with the stresses determined in
referencs 5. .

Application of yecurrence-foymuls golution,=- The stresses in the

thin-web beam can algo be determined by application of recurrence
formula (61) and boundary equations (G2) and (64). Division of the
beam into three bays of equal length (fig. 16) end application of
equations (64), (61), and (62), respectively, yields the following
set of slmulteneous equations for the correction forces X:

Xl Xe ' X3 Constants
=231 B! . 0
i 1 ‘2}.‘ . 1 1 0

u! -xl V'P
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 Substitution of the mumericel valuss given in teblo 3 yields

X X Constants
T B 1
-26.8 8.29 . 0

8,29 -26.8 = 8.29 0
S . 829 ~13.4  ~109k

‘and, consequently

(1]

: 35 .l+_ powm.s

103.6 pownds

M
i i1

Substlitution of these correction forces and the numerical values
glven in table.3 into equations (€3) and (70), respectively, yields
the stringer and sheer stresses in the panel at sectiome 1, 2, and 3.
The stringer stresses cobtalned are plotted in figure 17.

- - - - - .- - - B - PR - D i

ACCURACY OF ANALYSIS -

The resulss of the mumerical examples presented indicate that ~
the recwrrence formules and differential equations developed in ~he
present paper are sultable for the analyses of the siringer and sheuar
stregses in cembered box beems. The plois given in figure 13 show
that the correction stringer stresses determined from the recurcence-~
formula solution are ildenticel with those found by the differential-
equation solution, as they should be because the two solutions are
fundementelly identical. The curves for the tatal siresses in the
stringers in the root reglon (fig. 15) indicato that tho differential-
equation solution (end consoquently the recurrence-{ormule solubion)
yields results in good erreement witn the sxporimental date of
reference 3. The plotes glven in flgure 12 for the shear stresses in
the skin of the part of the cover edjacent to the flange stringer also
indicate that the results of the recurrence~formnla solution and
differential~equation golubion ere in good agreement with the
experimentally determined stresses, It should be noted that for both N
stringer stress and ghear slress the elementary solubion yields
results thet are in poor agreement with the sxperimental data. S
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The stresses in the stringers of the thin-web beam (example 2)
of reference 5 determined by the recurrence-formula solubion and
difPerential-equation solution are ldentical with those found by
the method of analysls of reference 5 and are plotted In figure 17.

CONCLUGIONS

» A

Recurrence formles and differential equatlons are developed
for the. stress enalysis of cembered box beams having either one or
two covers. The recurrence forumlas in cenjunction with the boundary
equatlions presented can be used for the determination of stringer and
ghear stresses in laterally loaded cambered -box beems restrelned at
both ends, unrestrained at both ends, or resirained at one end and
unrestrained at the other end. The differential-equation solutions
are appllcadle to cantilevered. ca.mbered box beums that are tip-loaded
end of uniformn construction. .

Comperisons glven between the methods of anelysis of the
present paper and experimental date and another method of snelysis
indicate that the formmlas and eque.tions developed are adequate for
the stress analysis of cambered box beams.

Langley Memoriel Aeronauticel laboratory
National Advisory Committee for Aeror'xautics
Langley Field, Va., July 15, 1947
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TABIE 1.- SCHEME OF EQUATIONS FOR CANTILEVER CAMEERED BOX BEAM

xl X2 I3 xm-l Xm Xml Constants
(o * M) 1 ~Yo%o " 1"y
My ~(aq + "2) Mo W T %Y

TABIE 2.~ NUMERICAL VALUES FOR EXAMPIE 1

P c ) h 5 %, L
(1bs) (in.) (in.) (in.) (in.) (in.) (in.)

3000 3.38 9.01 1,8 | c.o18 | 0.0251 88

AF AS 'AI. I 4 G bH I.i 'b‘= ‘
(n.2) |(10.2) [ (1n.2) [(1n. 1) | (1n.)] (psi) (ps1) |(in.)](in.)

0.810] 0.537] 3.98 | k2.3 3.284x106 10.4 x 106 22 116.63

TABIE 3.= NUMERICAL VALUES FOR EXAMPIE 2

ol

= tv= tc I AF AS I G E Li
(1bs) ) | (tn.) | (#na)] (In®)] (1n.2)] (1n.M) (ps1) (ps1) | (4n.)

7

2005 9.8% 0.0315] 47.25| 0.620] 1.085| 960 |4 x 106]10.k x 109 15.75

" NATIORAYL ADVISORY
COMMITTEE FOR AFRONAUTICS
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Figure |- Cambered box beams.
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Figure 2 - Cover stringer discontinuities.
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(a) Single covered box beam,

Figure 3- Notation for tip-loaded single-covered box beam.,

(b) Shear stresses.
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Figure 4.-Free body diagram of beam.
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Figure 5-Double covered box beam.
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Figure 6:-Notation ‘for single covered box beams
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Héure 7-Application of correction forces.

(474

99%T "ON NI VOVN




LAY

\YA §

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 8-Beam with fixed end,
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- Figure 9.-Beam with carry-through bay.
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Figure |O~Correction forces for
double covered box beam.

45



NACA TN No.

- Tat4§=33

— 2 3 3 2 \
Lenine —‘%-\ﬁ%\
I.O?_Ij:— -Ag=é.%' Siips 0.0402x} ; 0025 ¥y
54 l— Qo762 9
2 & l3xisxd (steel) J
| 334 X

(q) Cross section of test beam.
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(b) Side elevation of test beam.
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(d) Side elevation of substitute beam.
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(c) Substitute single stringer beam,
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(e) Notation for substitute beam.
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Figure 1|~ Details of fest beam and substitute single stringer beam  (example 1),
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Figure 12 - Cover shear stress (example ).
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Figure 13- Stringer corfection stresses (example 1).
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Figure 14 - Distribution of correction stresses (example 1),
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Figure 15~ Gover stringer stresses (example 1).
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Figure l6 Thin-web beam (example 2),
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Figue I7- Skringer stresses in thin-web beamn  (example 2).



